Stochastic and epistemic uncertainty propagation in LCA
نویسندگان
چکیده
Purpose: When performing uncertainty propagation, most LCA practitioners choose to represent uncertainties by single probability distributions and to propagate them using stochastic methods. However the selection of single probability distributions appears often arbitrary when faced with scarce information or expert judgement (epistemic uncertainty). Possibility theory has been developed over the last decades to address this problem. The objective of this study is to present a methodology that combines probability and possibility theories to represent stochastic and epistemic uncertainties in a consistent manner and apply it to LCA. A case study is used to show the uncertainty propagation performed with the proposed method and compare it to propagation performed using probability and possibility theories alone. Methods: Basic knowledge on the probability theory is first recalled, followed by a detailed description of epistemic uncertainty representation using fuzzy intervals. The propagation methods used are the Monte Carlo analysis for probability distribution and an optimisation on alpha-cuts for fuzzy intervals. The proposed method (noted IRS) generalizes the process of random sampling to probability distributions as well as fuzzy intervals, thus making the simultaneous use of both representations possible. Results and discussion: The results highlight the fundamental difference between the probabilistic and possibilistic representations: while the Monte Carlo analysis generates a single probability distribution, the IRS method yields a family of probability distributions bounded by an upper and a lower distribution. The distance between these two bounds is the consequence of the incomplete character of information pertaining to certain parameters. In a real situation, an excessive distance between these two bounds might motivate the decision-maker to increase the information base regarding certain critical parameters, in order to reduce the uncertainty. Such a decision could not ensue from a purely probabilistic calculation based on subjective (postulated) distributions (despite lack of information), because there is no way of distinguishing, in the variability of the calculated result, what comes from true randomness and what comes from incomplete information. Conclusions: The method presented offers the advantage of putting the focus on the information rather than deciding a priori of how to represent it. If the information is rich, then a purely statistical representation mode is adequate, but if the information is scarce, then it may be better conveyed by possibility distributions.
منابع مشابه
Uncertainty Propagation in Dynamic Event Trees - Initial Results for a Modified Tank Problem
The coupling of plant simulation models and stochastic models representing failure events in Dynamic Event Trees (DET) is a framework to model the dynamic interactions among physical processes, equipment failures, and operator responses. The benefits of the framework, as a number of applications show, include, for instance, the capability to account for the aleatory timing of equipment failures...
متن کاملRobustness-based portfolio optimization under epistemic uncertainty
In this paper, we propose formulations and algorithms for robust portfolio optimization under both aleatory uncertainty (i.e., natural variability) and epistemic uncertainty (i.e., imprecise probabilistic information) arising from interval data. Epistemic uncertainty is represented using two approaches: (1) moment bounding approach and (2) likelihood-based approach. This paper first proposes a ...
متن کاملA Mixed Uncertainty Quantification Approach Using Evidence Theory and Stochastic Expansions
Uncertainty quantification (UQ) is the process of quantitative characterization and propagation of input uncertainties to the response measure of interest in experimental and computational models. The input uncertainties in computational models can be either aleatory, i.e., irreducible inherent variations, or epistemic, i.e., reducible variability which arises from lack of knowledge. Previously...
متن کاملComparing uncertainty data in epistemic and ontic sense used to decision making problem
In the paper aspect of comparability alternatives in decision making problem by imprecise or incomplete information isexamined. In particular, new definitions of transitivity based on the measure of the intensity preference between pairsof alternatives in epistemic and ontic case is presented and its application to solve decision making problem is proposed.
متن کاملA novel risk-based analysis for the production system under epistemic uncertainty
Risk analysis of production system, while the actual and appropriate data is not available, will cause wrong system parameters prediction and wrong decision making. In uncertainty condition, there are no appropriate measures for decision making. In epistemic uncertainty, we are confronted by the lack of data. Therefore, in calculating the system risk, we encounter vagueness that we have to use ...
متن کامل